Learning to Branch in MILP Solvers

Maxime Gasse, Didier Chetelat, Laurent Charlin, Andrea Lodi maxime.gasse@polymtl.ca

> TTI-C Workshop on Automated Algorithm Design Chicago, August 7-9th 2019

The Graph Convolution Neural Network Model

Experiments: Imitation Learning

Experiments: Reinforcement Learning

Mixed-Integer Linear Program (MILP)

$$\begin{array}{ll} \mathop{\arg\min}\limits_{\mathbf{x}} & \mathbf{c}^{\top}\mathbf{x}\\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b},\\ & \mathbf{I} \leq \mathbf{x} \leq \mathbf{u},\\ & \mathbf{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}. \end{array}$$

- $\mathbf{c} \in \mathbb{R}^n$ the objective coefficients
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathbf{b} \in \mathbb{R}^m$ the constraint right-hand-sides
- $\mathbf{I}, \mathbf{u} \in \mathbb{R}^n$ the lower and upper variable bounds
- $p \leq n$ integer variables

NP-hard problem.

Linear Program (LP) relaxation

$$\begin{array}{ll} \underset{\mathbf{x}}{\operatorname{arg\,min}} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b}, \\ & \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}, \\ & \mathbf{x} \in \mathbb{R}^{n}. \end{array}$$

Convex problem, efficient algorithms (e.g., simplex).

▶ $\mathbf{x}^{\star} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$ (lucky) \rightarrow solution to the original MILP

• $\mathbf{x}^{\star} \not\in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \to \text{lower bound}$ to the original MILP

Linear Program (LP) relaxation

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_i^* \notin \mathbb{Z}$

$$x_i \leq \lfloor x_i^\star \rfloor \quad \lor \quad x_i \geq \lceil x_i^\star \rceil.$$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among integral leaf nodes.

Stopping criterion:

- L = U (optimality certificate)
- $L = \infty$ (infeasibility certificate)
- L U < threshold (early stopping)</p>

Branch-and-bound: a sequential process

Sequential decisions:

- node selection
- variable selection (branching)
- cutting plane selection
- primal heuristic selection
- simplex initialization

State-of-the-art in B&B solvers: expert rules

. . .

Objective: no clear consensus

- \blacktriangleright L = U fast ?
- ► U L 📐 fast ?
- ► L ↗ fast ?
- ▶ $U \searrow$ fast ?

Markov Decision Process

<u>Objective</u>: take actions which maximize the long-term reward \sim

$$\sum_{t=0}^{\infty} r(\mathbf{s}_t),$$

with $r : S \to \mathbb{R}$ a reward function.

Branching as a Markov Decision Process

State: the whole internal state of the solver, **s**. Action: a branching variable, $a \in \{1, ..., p\}$.

Trajectory:
$$\tau = (\mathbf{s}_0, \dots, \mathbf{s}_T)$$

- initial state s₀: a MILP ~ p(s₀);
- terminal state s_T: the MILP is solved;
- intermediate states: branching

$$\mathbf{s}_{t+1} \sim p_{\pi}(\mathbf{s}_{t+1}|\mathbf{s}_t) = \sum_{a \in \mathcal{A}} \underbrace{\pi(a|\mathbf{s}_t)}_{\text{branching policy solver internals}} \underbrace{p(\mathbf{s}_{t+1}|\mathbf{s}_t, a)}_{\text{solver internals}}.$$

Branching problem: solve

$$\pi^{\star} = rg\max_{\pi} \max_{ au \sim oldsymbol{p}_{\pi}} \left[r(au)
ight]$$
 ,

with $r(\tau) = \sum_{\mathbf{s} \in \tau} r(\mathbf{s})$.

The branching problem: considerations

A policy π^* may not be optimal in two distinct configurations.

Initial distribution $p(s_0)$?

Collection of MILPs of interest.

Transition distribution $p(\mathbf{s}_{i+1}|\mathbf{s}_i, a)$?

Solver internals + parameterization.

Reward function $r(\tau)$?

- negative running time \implies solve quickly
- \blacktriangleright negative duality gap integral \implies fast gap closing
- \blacktriangleright negative upper bound integral \implies diving heuristic
- lower bound integral \implies fast relaxation tightening

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking

- solve both LPs for each candidate variable
- pick the variable resulting in tightest relaxation
- + small trees
- computationally expensive

Pseudo-cost: backward looking

- keep track of tightenings in past branchings
- pick the most promising variable
- + very fast, almost no computations
- cold start

Reliability pseudo-cost: best of both worlds

- compute SB scores at the beginning
- gradually switches to pseudo-cost (+ other heuristics)
- + best overall solving time trade-off (on MIPLIB)

Machine learning approaches

Node selection

- ► He et al., 2014
- Song et al., 2018
- Variable selection (branching)
 - Khalil, Le Bodic, et al., 2016 \implies "online" imitation learning
 - ► Hansknecht et al., 2018 ⇒ offline imitation learning
 - Balcan et al., 2018 \implies theoretical results

Cut selection

- Baltean-Lugojan et al., 2018
- ▶ Tang et al., 2019

Primal heuristic selection

- Khalil, Dilkina, et al., 2017
- Hendel et al., 2018

Challenges

 $MDP \implies Reinforcement \ learning \ (RL) ?$

State representation: \boldsymbol{s}

- global level: original MILP, tree, bounds, focused node...
- ▶ node level: variable bounds, LP solution, simplex statistics...
- dynamically growing structure (tree)
- variable-size instances (cols, rows) \implies Graph Neural Network

Sampling trajectories: $au \sim p_{\pi}$

- collect one $\tau =$ solving a MILP (with π likely not optimal)
- expensive \implies train on small instances, use pre-trained policy

The Graph Convolution Neural Network Model

The Graph Convolution Neural Network Model

Node state encoding

Natural representation : variable / constraint bipartite graph

 $\begin{array}{c} \underset{\mathbf{x}}{\operatorname{arg\,min}} \quad \mathbf{c}^{\top}\mathbf{x} & \underbrace{(\mathbf{v}_{0})}_{\mathbf{e}_{0,0}} \underbrace{\mathbf{e}_{0,0}}_{\mathbf{e}_{1,0}} \underbrace{\mathbf{c}_{0}}_{\mathbf{e}_{1,0}} \\ \text{subject to} \quad \mathbf{A}\mathbf{x} \leq \mathbf{b}, & \underbrace{(\mathbf{v}_{1})}_{\mathbf{e}_{2,0}} \underbrace{\mathbf{e}_{2,0}}_{\mathbf{e}_{2,1}} \underbrace{\mathbf{c}_{1}}_{\mathbf{e}_{2,0}} \\ \mathbf{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}. & \underbrace{(\mathbf{v}_{2})}_{\mathbf{e}_{2,1}} \underbrace{\mathbf{e}_{2,1}}_{\mathbf{e}_{2,1}} \underbrace{\mathbf{c}_{1}}_{\mathbf{e}_{2,1}} \\ \mathbf{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}. \end{array}$

- ▶ v_i: variable features (type, coef., bounds, LP solution...)
- ► c_j: constraint features (right-hand-side, LP slack...)
- e_{i,j}: non-zero coefficients in A

D. Selsam et al. (2019). Learning a SAT Solver from Single-Bit Supervision.

The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model Neighbourhood-based updates: $\mathbf{v}_i \leftarrow \sum_{i \in \mathcal{N}_i} \mathbf{f}_{\theta}(\mathbf{v}_i, \mathbf{e}_{i,j}, \mathbf{c}_j)$

Natural model choice for graph-structured data

- permutation-invariance
- benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional Networks.

Strong Branching approximation

Full Strong Branching (FSB): good branching rule, but expensive. Can we learn a fast, good-enough approximation ?

Not a new idea

- Alvarez et al., 2017 predict SB scores, XTrees model
- ► Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
- Hansknecht et al., 2018 do the same, λ -MART model

Behavioural cloning

- collect $\mathcal{D} = \{(\mathbf{s}, a^*), \dots\}$ from the expert agent (FSB)
- estimate $\pi^*(a | \mathbf{s})$ from \mathcal{D}
- $+\,$ no reward function, supervised learning, well-behaved
- will never surpass the expert...

Implementation with the open-source solver SCIP¹

¹A. Gleixner et al. (2018). The SCIP Optimization Suite 6.

Minimum set covering²

	Easy				Medium	Hard				
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wir	าร	Nodes
FSB	20.19	0 / 100	16	282.14	0 / 100	215	3600.00	0 /	0	n/a
RPB	13.38	1 / 100	63	66.58	9 / 100	2327	1699.96	27 /	65	51022
XTrees	14.62	0 / 100	199	106.95	0 / 100	3043	2726.56	0 /	36	58 608
SVMrank	13.33	1 / 100	157	89.63	0 / 100	2516	2401.43	0 /	48	42 824
λ -MART	12.20	59 / 100	161	72.07	12 / 100	2584	2177.72	0 /	54	48 0 32
GCNN	12.25	39 / 100	130	59.40	79 / 100	1845	1680.59	40 /	64	34 527

3 problem sizes

- ▶ 500 rows, 1000 cols (easy), training distribution
- 1000 rows, 1000 cols (medium)
- 2000 rows, 1000 cols (hard)

Pays off: better than SCIP's default in terms of solving time. Generalizes to harder problems !

 2 E. Balas et al. (1980). Set covering algorithms using cutting planes, heuristics, and subgradient optimization: a computational study.

Maximum independent set³

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	34.82	5 / 100	7	2434.80	0 / 52	67	3600.00	0/0	n/a
RPB	12.01	3 / 100	20	175.00	28 / 100	1292	2759.82	11 / 34	8156
XTrees	11.77	4 / 100	79	1691.76	0 / 44	9441	3600.03	0/ 0	n/a
SVMrank	9.70	9 / 100	43	434.34	0 / 80	867	3499.30	0/4	10 256
λ -MART	8.36	18 / 100	48	318.38	6 / 84	1042	3493.27	0/ 3	15 368
GCNN	7.81	61 / 100	38	149.12	66 / 93	955	2281.58	28 / 32	5070

3 problem sizes, Barabási-Albert graphs (affinity=4)

- 500 nodes (easy), training distribution
- 1000 nodes (medium)
- 1500 nodes (hard)

 $^{^{3}\}text{D.}$ Chalupa et al. (2014). On the Growth of Large Independent Sets in Scale-Free Networks.

Combinatorial auction⁴

	Easy			Medium			Hard		
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	7.27	0 / 100	5	92.49	0 / 100	72	1845.19	0/67	395
RPB	4.49	3 / 100	8	18.45	0 / 100	630	140.13	13 / 100	5440
XTrees	3.58	0 / 100	82	23.67	0 / 100	944	481.11	0/95	10 752
SVMrank	3.58	0 / 100	71	25.81	0 / 100	864	401.08	0 / 98	6353
λ -MART	2.86	66 / 100	70	15.23	3 / 100	849	227.44	1 / 100	6878
GCNN	2.88	31 / 100	64	11.23	97 / 100	661	118.74	86 / 100	4912

3 problem sizes

- 100 items, 500 bids (easy), training distribution
- 200 items, 1000 bids (medium)
- 300 items, 1500 bids (hard)

 $^{^{\}rm 4}$ K. Leyton-Brown et al. (2000). Towards a Universal Test Suite for Combinatorial Auction Algorithms.

Capacitated facility location⁵

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	30.86	5 / 100	8	237.14	3 / 97	66	1231.37	1 / 92	81
RPB	28.12	23 / 100	13	182.31	1 / 100	127	829.54	3 / 100	149
XTrees	28.88	15 / 100	105	191.95	0 / 100	481	895.37	5 / 100	495
SVMrank	26.43	11 / 100	89	152.28	20 / 100	373	726.79	25 / 100	395
λ -MART	26.21	13 / 100	88	149.60	23 / 100	367	733.48	31 / 100	395
GCNN	26.01	33 / 100	82	147.22	53 / 100	365	761.88	35 / 100	388

3 problem sizes

- ▶ 100 facilities, 100 customers (easy), training distribution
- 100 facilities, 200 customers (medium)
- 100 facilities, 400 customers (hard)

 $^{{}^{5}}$ G. Cornuejols et al. (1991). A comparison of heuristics and relaxations for the capacitated plant location problem.

Experiments: Reinforcement Learning

Experiments: Reinforcement Learning

RL with actor-critic

Actor-critic policy gradient (state-of-the-art)

- ► Actor π(a|s): policy
- Critic $Q(\mathbf{s}_i)$: value-function $\sum_{j=i}^{\infty} r(\mathbf{s}_j) \approx \text{running time prediction}$

Sample a dataset $\ensuremath{\mathcal{D}}$ of state-action trajectories

Update the critic: $\boldsymbol{Q} \leftarrow \boldsymbol{Q} - \eta \nabla_{\boldsymbol{Q}}$

$$\blacktriangleright \mathbb{E}_{\tau}^{\mathcal{D}}\left[\mathbb{E}_{\mathbf{s}_{i}}^{\tau}\left[\left(Q(\mathbf{s}_{i})-\sum_{j=i}^{t}r(\mathbf{s}_{j})\right)^{2}\right]\right]$$

Update the actor: $\pi \leftarrow \pi + \eta \nabla_{\pi}$

$$\blacktriangleright \mathbb{E}_{\tau}^{\mathcal{D}}\left[\mathbb{E}_{\mathbf{s}_{i},a_{i},\mathbf{s}_{i+1}}^{\tau}\left[\log \pi(a_{i}|\mathbf{s}_{i})Q(\mathbf{s}_{i+1})\right]\right]$$

Open question: good architecture / good features for the critic ?

Experiments: Reinforcement Learning

RL with actor-critic

Early results: set covering problem

Number of nodes (ratio vs pre-trained policy)

Reward: negative number of nodes

Proximal Policy Optimization (PPO)

Challenging. . . but promising !

Conclusion

Heuristic vs data-driven branching:

- $+\,$ tune B&B to your problem of interest automatically
- no guarantees outside of the training distribution
- requires training instances

What next:

- real-world problems
- other solver components: node selection, cut selection...
- reinforcement learning: still a lot of challenges
- interpretation: which variables are chosen ? Why ?
- provide an clean API + benchmarks for MILP adaptive solving (based on the open-source SCIP solver)

Code online: https://github.com/ds4dm/learn2branch

Learning to Branch in MILP Solvers

Thank you!

Maxime Gasse, Didier Chetelat, Laurent Charlin, Andrea Lodi

maxime.gasse@polymtl.ca

Learned Policy vs Reliability Pseudocost (SCIP default)

Learned Policy vs Reliability Pseudocost (SCIP default)

Fewer nodes, but higher solving times...

Learned Policy vs Reliability Pseudocost (SCIP default)

