
Learning to Branch in MILP Solvers

Maxime Gasse, Didier Chetelat, Laurent Charlin, Andrea Lodi
maxime.gasse@polymtl.ca

TTI-C Workshop on Automated Algorithm Design
Chicago, August 7-9th 2019

1/32



Overview

The Branching Problem

The Graph Convolution Neural Network Model

Experiments: Imitation Learning

Experiments: Reinforcement Learning

2/32



The Branching Problem



The Branching Problem

Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l,u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

4/32



The Branching Problem

Linear Program (LP) relaxation

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn.

Convex problem, efficient algorithms (e.g., simplex).

I x? P Zp × Rn−p (lucky) → solution to the original MILP
I x? 6P Zp × Rn−p → lower bound to the original MILP

5/32



The Branching Problem

Linear Program (LP) relaxation

6/32



The Branching Problem

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. ∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among integral leaf nodes.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

7/32



The Branching Problem

Branch-and-Bound

8/32



The Branching Problem

Branch-and-Bound

9/32



The Branching Problem

Branch-and-Bound

10/32



The Branching Problem

Branch-and-Bound

11/32



The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:
I node selection
I variable selection

(branching)
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

State-of-the-art in B&B
solvers: expert rules

Objective: no clear consensus
I L = U fast ?
I U - L ↘ fast ?
I L ↗ fast ?
I U ↘ fast ?

12/32



The Branching Problem

Markov Decision Process

Agent

Environment

Action a P AState s P S

Objective: take actions which maximize the long-term reward

∞∑
t=0

r(st),

with r : S → R a reward function.

13/32



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

14/32



The Branching Problem

The branching problem: considerations

A policy π? may not be optimal in two distinct configurations.

Initial distribution p(s0) ?
I Collection of MILPs of interest.

Transition distribution p(si+1|si , a) ?
I Solver internals + parameterization.

Reward function r(τ) ?
I negative running time =⇒ solve quickly
I negative duality gap integral =⇒ fast gap closing
I negative upper bound integral =⇒ diving heuristic
I lower bound integral =⇒ fast relaxation tightening

15/32



The Branching Problem

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking
I solve both LPs for each candidate variable
I pick the variable resulting in tightest relaxation
+ small trees
− computationally expensive

Pseudo-cost: backward looking
I keep track of tightenings in past branchings
I pick the most promising variable
+ very fast, almost no computations
− cold start

Reliability pseudo-cost: best of both worlds
I compute SB scores at the beginning
I gradually switches to pseudo-cost (+ other heuristics)
+ best overall solving time trade-off (on MIPLIB)

16/32



The Branching Problem

Machine learning approaches

Node selection
I He et al., 2014
I Song et al., 2018

Variable selection (branching)
I Khalil, Le Bodic, et al., 2016 =⇒ "online" imitation learning
I Hansknecht et al., 2018 =⇒ offline imitation learning
I Balcan et al., 2018 =⇒ theoretical results

Cut selection
I Baltean-Lugojan et al., 2018
I Tang et al., 2019

Primal heuristic selection
I Khalil, Dilkina, et al., 2017
I Hendel et al., 2018

17/32



The Branching Problem

Challenges

MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .
− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances, use pre-trained policy

18/32



The Graph Convolution Neural Network Model



The Graph Convolution Neural Network Model

Node state encoding

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )
I cj : constraint features (right-hand-side, LP slack. . . )
I ei ,j : non-zero coefficients in A

D. Selsam et al. (2019). Learning a SAT Solver from Single-Bit Supervision.

20/32



The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model
Neighbourhood-based updates: vi ←

∑
jPNi

fθ(vi , ei,j , cj)

v0

v1

v2

0.2

0.1

0.7

π(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data

I permutation-invariance
I benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

21/32



Experiments: Imitation Learning



Experiments: Imitation Learning

Strong Branching approximation
Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation ?

Not a new idea

I Alvarez et al., 2017 predict SB scores, XTrees model
I Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
I Hansknecht et al., 2018 do the same, λ-MART model

Behavioural cloning

I collect D = {(s, a?), . . . } from the expert agent (FSB)
I estimate π?(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP1

1A. Gleixner et al. (2018). The SCIP Optimization Suite 6.
23/32



Experiments: Imitation Learning

Minimum set covering2

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 20.19 0 / 100 16 282.14 0 / 100 215 3600.00 0 / 0 n/a
RPB 13.38 1 / 100 63 66.58 9 / 100 2327 1699.96 27 / 65 51 022
XTrees 14.62 0 / 100 199 106.95 0 / 100 3043 2726.56 0 / 36 58 608

SVMrank 13.33 1 / 100 157 89.63 0 / 100 2516 2401.43 0 / 48 42 824
λ-MART 12.20 59 / 100 161 72.07 12 / 100 2584 2177.72 0 / 54 48 032
GCNN 12.25 39 / 100 130 59.40 79 / 100 1845 1680.59 40 / 64 34 527

3 problem sizes

I 500 rows, 1000 cols (easy), training distribution
I 1000 rows, 1000 cols (medium)
I 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

24/32



Experiments: Imitation Learning

Maximum independent set3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 34.82 5 / 100 7 2434.80 0 / 52 67 3600.00 0 / 0 n/a
RPB 12.01 3 / 100 20 175.00 28 / 100 1292 2759.82 11 / 34 8156
XTrees 11.77 4 / 100 79 1691.76 0 / 44 9441 3600.03 0 / 0 n/a

SVMrank 9.70 9 / 100 43 434.34 0 / 80 867 3499.30 0 / 4 10 256
λ-MART 8.36 18 / 100 48 318.38 6 / 84 1042 3493.27 0 / 3 15 368
GCNN 7.81 61 / 100 38 149.12 66 / 93 955 2281.58 28 / 32 5070

3 problem sizes, Barabási-Albert graphs (affinity=4)

I 500 nodes (easy), training distribution
I 1000 nodes (medium)
I 1500 nodes (hard)

3D. Chalupa et al. (2014). On the Growth of Large Independent Sets in
Scale-Free Networks.

25/32



Experiments: Imitation Learning

Combinatorial auction4

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 7.27 0 / 100 5 92.49 0 / 100 72 1845.19 0 / 67 395
RPB 4.49 3 / 100 8 18.45 0 / 100 630 140.13 13 / 100 5440
XTrees 3.58 0 / 100 82 23.67 0 / 100 944 481.11 0 / 95 10 752

SVMrank 3.58 0 / 100 71 25.81 0 / 100 864 401.08 0 / 98 6353
λ-MART 2.86 66 / 100 70 15.23 3 / 100 849 227.44 1 / 100 6878
GCNN 2.88 31 / 100 64 11.23 97 / 100 661 118.74 86 / 100 4912

3 problem sizes

I 100 items, 500 bids (easy), training distribution
I 200 items, 1000 bids (medium)
I 300 items, 1500 bids (hard)

4K. Leyton-Brown et al. (2000). Towards a Universal Test Suite for
Combinatorial Auction Algorithms.

26/32



Experiments: Imitation Learning

Capacitated facility location5

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 30.86 5 / 100 8 237.14 3 / 97 66 1231.37 1 / 92 81
RPB 28.12 23 / 100 13 182.31 1 / 100 127 829.54 3 / 100 149
XTrees 28.88 15 / 100 105 191.95 0 / 100 481 895.37 5 / 100 495

SVMrank 26.43 11 / 100 89 152.28 20 / 100 373 726.79 25 / 100 395
λ-MART 26.21 13 / 100 88 149.60 23 / 100 367 733.48 31 / 100 395
GCNN 26.01 33 / 100 82 147.22 53 / 100 365 761.88 35 / 100 388

3 problem sizes

I 100 facilities, 100 customers (easy), training distribution
I 100 facilities, 200 customers (medium)
I 100 facilities, 400 customers (hard)

5G. Cornuejols et al. (1991). A comparison of heuristics and relaxations for
the capacitated plant location problem.

27/32



Experiments: Reinforcement Learning



Experiments: Reinforcement Learning

RL with actor-critic
Actor-critic policy gradient (state-of-the-art)

I Actor π(a|s): policy
I Critic Q(si ): value-function

∑∞
j=i r(sj) ≈ running time prediction

Sample a dataset D of state-action trajectories

I τ = (s0, . . . , si , ai , si+1, . . . , sT ) ∼ pπ

Update the critic: Q ← Q − η∇Q

I ED
τ

[
Eτsi
[
(Q(si )−

∑t
j=i r(sj))

2
]]

Update the actor: π ← π + η∇π
I ED

τ

[
Eτsi ,ai ,si+1

[log π(ai |si )Q(si+1)]
]

Open question: good architecture / good features for the critic ?

29/32



Experiments: Reinforcement Learning

RL with actor-critic
Early results: set covering problem

Reward: negative
number of nodes

Proximal Policy
Optimization (PPO)

Challenging. . . but
promising !

30/32



Conclusion
Heuristic vs data-driven branching:

+ tune B&B to your problem of interest automatically
− no guarantees outside of the training distribution
− requires training instances

What next:

I real-world problems
I other solver components: node selection, cut selection...
I reinforcement learning: still a lot of challenges
I interpretation: which variables are chosen ? Why ?
I provide an clean API + benchmarks for MILP adaptive solving

(based on the open-source SCIP solver)

Code online: https://github.com/ds4dm/learn2branch

31/32



Learning to Branch in MILP Solvers

Thank you!

Maxime Gasse, Didier Chetelat, Laurent Charlin, Andrea Lodi
maxime.gasse@polymtl.ca

32/32



Learned Policy vs Reliability Pseudocost (SCIP default)

Trained on 500 cols
only

Extrapolates to
harder instances

About 30-40% node
reduction on those

1/3



Learned Policy vs Reliability Pseudocost (SCIP default)

Fewer nodes, but
higher solving times...

2/3



Learned Policy vs Reliability Pseudocost (SCIP default)

Time delta:
- python overhead
- data extraction (s)
- model evaluation

Close the gap:
- engineering ?
- efficient heuristics
(reliability) ?

3/3


